|
:''For a table of volumetric heat capacities, see Heat capacity#Table of specific heat capacities.'' Volumetric heat capacity (VHC), also termed volume-specific heat capacity, describes the ability of a given volume of a substance to store internal energy while undergoing a given temperature change, but without undergoing a phase transition. It is different from specific heat capacity in that the VHC is a 'per unit volume' measure of the relationship between thermal energy and temperature of a material, while the specific heat is a 'per unit mass' measure (or occasionally per molar quantity of the material). If given a specific heat value of a substance, one can convert it to the VHC by multiplying the specific heat by the density of the substance.〔(Army Corps of Engineers Technical Manual: Arctic and Subarctic Construction: Calculation Methods for Determination of Depths of Freeze and Thaw in Soils'', TM 5-852-6/AFR 88-19, Volume 6, 1988, Equation 2-1 )〕 Dulong and Petit predicted in 1818 that the product of solid substance density and specific heat capacity (ρcp) would be constant for all solids. This amounted to a prediction that volumetric heat capacity in solids would be constant. In 1819 they found that volumetric heat capacities were not quite constant, but that the most constant quantity was the heat capacity of solids adjusted by the presumed weight of the atoms of the substance, as defined by Dalton (the Dulong–Petit law). This quantity was proportional to the heat capacity per atomic weight (or per molar mass), which suggested that it is the heat capacity ''per atom'' (not per unit of volume) which is closest to being a constant in solids. Eventually (see the discussion in heat capacity) it became clear that heat capacities per particle for all substances in all states are the same, to within a factor of two, so long as temperatures are not in the cryogenic range. For very cold temperatures, heat capacities fall drastically and eventually approach zero as temperature approaches zero. The heat capacity ''on a volumetric basis'' in solid materials at room temperatures and above varies more widely, from about 1.2 MJ/m³K (for example bismuth〔Based on values in (this table ) and density.〕) to 3.5 MJ/m³K (for example iron〔Based on (NIST data ) and density.〕), but this is mostly due to differences in the physical size of atoms. See a discussion in atom. Atoms vary greatly in density, with the heaviest often being more dense, and thus are closer to taking up the same average volume in solids than their mass alone would predict. If all atoms ''were'' the same size, molar and volumetric heat capacity would be proportional and differ by only a single constant reflecting ratios of the atomic-molar-volume of materials (their atomic density). An additional factor for all types of specific heat capacities (including molar specific heats) then further reflects degrees of freedom available to the atoms composing the substance, at various temperatures. For most liquids, the volumetric heat capacity is narrower, for example octane at 1.64 MJ/m³K or ethanol at 1.9. This reflects the modest loss of degrees of freedom for particles in liquids as compared with solids. However, water has a very high volumetric heat capacity, at 4.18 MJ/m³K, and ammonia is also fairly high (3.3). For gases at room temperature, the range of volumetric heat capacities per atom (not per molecule) only varies between different gases by a small factor less than two, because every ideal gas has the same molar volume. Thus, each gas molecule occupies the same mean volume in all ideal gases, regardless of the type of gas (see kinetic theory). This fact gives each gas molecule the same effective "volume" in all ideal gases (although this volume/molecule in gases is far larger than molecules occupy on average in solids or liquids). Thus, in the limit of ideal gas behavior (which many gases approximate except at low temperatures and/or extremes of pressure) this property reduces differences in gas volumetric heat capacity to simple differences in the heat capacities of individual molecules. As noted, these differ by a factor depending on the degrees of freedom available to particles within the molecules. ==Gas volumetric heat capacities== Large complex gas molecules may have high heat capacities per mole of gas molecules, but their heat capacities per mole of total gas atoms are very similar to those of liquids and solids, again differing by less than a factor of two per mole of atoms. This factor of two represents vibrational degrees of freedom available in solids vs. gas molecules of various complexities. In monatomic gases (like argon) at room temperature and constant volume, volumetric heat capacities are all very close to 0.5 kJ/m³K, which is the same as the theoretical value of 3/2 RT per kelvin per mole of gas molecules (where R is the gas constant and T is temperature). As noted, the much lower values for gas heat capacity in terms of volume as compared with solids (although more comparable per mole, see below) results mostly from the fact that gases under standard conditions consist of mostly empty space (about 99.9% of volume), which is not filled by the atomic volumes of the atoms in the gas. Since the molar volume of gases is very roughly 1000 times that of solids and liquids, this results in a factor of about 1000 loss in volumetric heat capacity for gases, as compared with liquids and solids. Monatomic gas heat capacities per atom (not per molecule) are decreased by a factor of 2 with regard to solids, due to loss of half of the potential degrees of freedom per atom for storing energy in a monatomic gas, as compared with regard to an ideal solid. There is some difference in the heat capacity of monatomic vs. polyatomic gasses, and also gas heat capacity is temperature-dependent in many ranges for polyatomic gases; these factors act to modestly (up to the discussed factor of 2) increase heat capacity per atom in polyatomic gases, as compared with monatomic gases. Volumetric heat capacities in polyatomic gases vary widely, however, since they are dependent largely on the number of atoms per molecule in the gas, which in turn determines the total number of atoms per volume in the gas. The volumetric heat capacity is defined as having SI units of J/(m³·K). It can also be described in Imperial units of BTU/(ft³·F°). 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Volumetric heat capacity」の詳細全文を読む スポンサード リンク
|